Container Puzzle Algorithm: Measure 1-10 litres, given 3, 7, and 10 litre containers, with the largest being full of water.
0
/
1343

Container Puzzle Solution:
Given three containers 3, 7, and 10 litres respectively with the largest being full of water, determine a method of measuring anything between 1 to 10 litres using these containers alone. If any quantity isn’t measurable deduce accordingly. Give solution as well as algorithm for the container puzzle. This blog will also give an algorithm for solving this puzzle: 1) Store initial state of containers with their capacity in an array, for e.g. [0,0,10] in this case. 2) From State S (0,0,10), determine all possible configurations achievable by transferring liquids between containers, checking each time, the liquid that the containers can hold further. 3) Store each state obtained after each transfer in a list for revisiting and discarding invalid states. 4) If any of the states obtained as a result of Step 2), are already in the global list or contain same 3 numbers (quantities), discard them. 5) Add valid state at each level to an N-Ary tree. 6) Some states could be exceptions and may not obey Rule #4. In that case, count the number of attempts in reaching next state. If that exceeds 4 (4 is the highest number of states that can be obtained by liquid transfers between 3 containers given the capacities in this case. We can have generic number of attempts before reevaluating which can be NP2 where N= number of containers), reevaluate/backtrack the states obtained at 4 and pick one of the states that gives a different next State Sn 7) Continue iterating and adding new states until the liquid quantity to be measured is reached. Terminate and add this state to the tree which will be the highest leaf of the tree. Note:- A state S which will represent node of a tree can have a maximum of 4 children in this case as the number of containers is 3, say for e.g. S1,S2,S3,S4. Consider and add only valid states out of these as children of that state S. An N-Ary tree is the best data structure suited for solving puzzles like this. See the DEMO below which will print out the tree from initial to final state depending on the quantity entered for measurement. From the output of this tree, it’s very easy to trace the route till the destination state and print it out. Read more about tree route tracing algorithm :- DEPTH OF AN N-ARY TREE AND FINDING ROUTE TO A NODE IN AN N-ARY TREE Below is the complete code that runs the show behind the DEMO:-1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 | /* MIT License Copyright (c) [2017] [Golibrary.co] Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. @Author: Saurabh Gattani Email:- saurabh.gattani@gmail.com */ /* 0 0 10 3 0 7 0 7 3 0 0 10 3 7 0 3 4 3 3 7 0 | | | 3 7 0 0 4 6 | | | 3 1 6 0 7 3 0 0 10 3 4 3 | | | 0 4 6 0 1 9 | | | 3 1 6 1 0 9 0 0 10 | | | 7 0 3 1 7 2 0 1 9 | | | 3 7 0 3 5 2 1 0 9 0 7 3 0 7 3 3 4 3 0 4 6 3 1 6 0 1 9 1 0 9 1 7 2 3 5 2 */ var capacities = [3, 7, 10], globalList = []; var count = 1, numOfTries; // N-ary tree Node constructor function Node(data) { this.data = this.head = data; this.children = []; this.id = guid(); } // NaryTree Constructor function NaryTree() { this.contents = this.head = []; this.children = []; this.id = guid(); } function solvePuzzle() { numOfTries = 1, count = 1; var naryTree = new NaryTree(); var treeJSON = [(insertNode(naryTree, [0, 0, 10]))]; // remove all empty children clearProperty(treeJSON); if (!$('#tree').is(':empty')) { $('#tree').empty(); } // empty tree check if (treeJSON[0]) { $("#tree").nadyTree({ callType: 'obj', structureObj: treeJSON }); } // empty all JSON and globalList clearProperty(treeJSON, 'ALL'); clearProperty(naryTree, 'ALL'); globalList = []; } function insertNode(naryTree, data) { var tree = null; var matchFound = false; if (naryTree.contents.length === 0) { // empty tree condition naryTree.contents = data.slice(); // store this in global array globalList.push(naryTree.contents); naryTree.head = 1; naryTree.id = guid(); pushChildren(naryTree.children, solve(data, 0)); } else { // traverse tree to leaf nodes and insert here // below for loop logic needs to be changed var leaves = getLeafNodes([naryTree]).slice(); for (var p = 0; p < leaves.length; p++) { // search node and insert children in matched node only var parentToInsert = traverse(leaves, 'contents', leaves[p].contents.slice()); var nextStates = solve(leaves[p].contents.slice(), 0); var states = []; // remove infinite loop causing nodes from nextStates by checking from global list and removing cyclic nodes nextStates.some(function(itemArr) { if (!inTree(itemArr)) { states.push(itemArr); } }); // exception case where the logic of isCyclic needs to be re-evaluated if (numOfTries > 4) { states = reevaluate(nextStates); // backtrack here // reset number of solve attempts at the level //numOfTries = 0; } pushChildren(parentToInsert.children, states); // check if solve returns the quantity to be measured. If YES then break. matchFound = nextStates.some(function(arr) { return arr.some(function(item) { return item === parseInt($("#quantity").val()); }); }); } } if (numOfTries > 10) { alert("Quantitity cannot be measured"); return []; } if (!matchFound) { numOfTries++; naryTree = insertNode(naryTree, data); } return naryTree; } function reevaluate(statesArr) { var state = []; var flag = false; for (var index = 0; index < statesArr.length; index++) { var retStates = solve(statesArr[index].slice(), 0); flag = retStates.some(function(itemArr) { if (!inTree(itemArr)) { state = [itemArr]; return itemArr; } }); if (flag) { return state; } } return state; } function pushChildren(parent, children) { for (var index = 0; index < children.length; index++) { var node = new Node(); node.contents = children[index].slice(); // store this in global array globalList.push(node.contents); node.head = ++count; node.id = guid(); node.children = []; parent.push(node); } } function traverse(object, key, value) { var result = null; for (var i in object) { if (!!object[i] && typeof(object[i]) === "object") { if (object[i][key] && isEqual(object[i][key], value)) { return object[i]; } else { result = traverse(object[i], key, value); } } } return result; } function clearProperty(JsonObj, isALL = false) { $.each(JsonObj, function(key, value) { if (isALL || value instanceof Array && value.length === 0 && JsonObj[key]) { delete JsonObj[key]; } else if (typeof(value) === "object") { JsonObj[key] = clearProperty(value); } }); return JsonObj; } function getLeafNodes(nodes, result = []) { for (var i = 0, length = nodes.length; i < length; i++) { if (!nodes[i].children.length) { result.push(nodes[i]); } else { result = getLeafNodes(nodes[i].children, result); } } return result; } function inTree(node) { var a1 = node.slice(); var flag = globalList.some(function(arr) { var a2 = arr.slice(); return isCyclic(a1, a2); }); //console.log("Searching for", node, "in ", globalList, "Flag = ", flag); return flag; } function isCyclic(a1, a2) { var found = false; var a3 = a1.slice().sort(); var a4 = a2.slice().sort(); return a3.every(function(v, i) { return (v === a4[i]); }); //return found; } function isEqual(a1, a2) { return a1 && a2 && a1.length === a2.length && a1.every(function(v, i) { return v === a2[i] }); } function solve(quantities, count) { var source = [], destination = [], result = []; for (var i = 0; i < quantities.length; i++) { if (quantities[i] < capacities[i]) { destination.push(i); } if (quantities[i] > 0) { source.push(i); } } // clone the previous quantities configuration var savedQuantities = quantities.slice(); for (var x = 0; x < source.length; x++) { for (var y = 0; y < destination.length; y++) { if (source[x] !== destination[y] && quantities[destination[y]] < capacities[destination[y]]) { var liquidToAdd = capacities[destination[y]] - quantities[destination[y]], liquidToSubtract = (liquidToAdd > quantities[source[x]]) ? quantities[source[x]] : liquidToAdd; quantities[destination[y]] = quantities[destination[y]] + liquidToSubtract; quantities[source[x]] = quantities[source[x]] - liquidToSubtract; // restore the previous quantities configuration from cloned copy result.push(quantities); quantities = savedQuantities.slice(); } } } return result; } |